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We analyze structural and conformational properties in a simulated bead-spring model of a nonentangled,
supercooled polymer melt. We explore the statics of the model via various structure factors, involving not only
the monomers, but also the center of mass(CM). We find that the conformation of the chains and the CM-CM
structure factor, which is well described by a recently proposed approximation[Krakoviacket al., Europhys.
Lett. 58, 53 (2002)], remain essentially unchanged on cooling toward the critical glass transition temperature
Tc of mode-coupling theory. Spatial correlations between monomers on different chains, however, depend on
temperature, albeit smoothly. This implies that the glassy behavior of our model cannot result from static
intrachain or CM-CM correlations. It must be related to interchain correlations at the monomer level. Addi-
tionally, we study the dependence of interchain correlation functions on the position of the monomer along the
chain backbone. We find that this site dependence can be well accounted for by a theory based on the polymer
reference interaction site model. We also analyze triple correlations by means of the three-monomer structure
factors for the melt and for the chains. These structure factors are compared with the convolution approxima-
tion that factorizes them into a product of two-monomer structure factors. For the chains this factorization
works very well, indicating that chain connectivity does not introduce special triple correlations in our model.
For the melt deviations are more pronounced, particularly at wave vectors close to the maximum of the static
structure factor.
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I. INTRODUCTION

The microscopic understanding of the glass transition is a
challenging problem in contemporary condensed matter
physics [1–3]. During the past decade the research in this
field was strongly influenced by the mode-coupling theory
(MCT) [4,5]. This theory suggests that a nonlinear coupling
between density fluctuations drives the slowing down of the
structural relaxation when a liquid approaches its glass tran-
sition. MCT predicts that there is a critical temperatureTc,
experimentally found to be above the calorimetric glass tran-
sition temperatureTg, where the dynamics qualitatively
changes. ForT.Tc the relaxation of the glass former is de-
termined by the cooperative motion of the particles com-
prised in the nearest-neighbor shells(cage-effect). In “ideal
MCT,” the simplest version of the theory, the mutual block-
ing of the particles in the cages leads to a complete structural
arrest atTc. This complete freezing is not observed experi-
mentally, possibly with the exception of polydisperse hard-
sphere-like colloidal suspensions[6]. When cooling the glass

former towardTg the structural relaxation time continuously
increases, instead of diverging atTc. Thus, alternative relax-
ation mechanisms must exist besides the cage effect and
eventually become dominant forT&Tc. Within MCT the mi-
croscopic origin of these processes is, however, not well un-
derstood.

Despite this limitation of its range of validity the ideal
MCT has been tested in numerous experiments[4] and com-
puter simulations[3,4,7]. Broadly speaking, the theoretical
predictions were found to provide an adequate description of
the relaxation dynamics aboveTc. This success has stimu-
lated extensions of the theory, originally developed for
simple liquids, to molecules with orientational degrees of
freedom[8–10] and recently also to polymers[11].

A distinguishing feature of the theory consists in estab-
lishing a quantitative link between the structure of a glass
former and its dynamics. This link may be exploited to pre-
dict the relaxation behavior provided the relevant static prop-
erties are available. These properties involve the static struc-
ture factor and related quantities which must be determined
with high precision over a large range of wave vectors. Pre-
sumably due to this prerequisite a quantitative comparison of
the predicted and measured dynamics has been attempted
only for a few systems in the past, such as hard-sphere-like*Corresponding author. Email address: baschnag@ics.u-strasbg.fr
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colloidal particles[12], soft-sphere[13], hard-sphere[14] or
Lennard-Jones mixtures[15], diatomic molecules[16], and
models forortho-terphenyl[17,18] and SiO2 [19,20]. These
studies suggest that forT*Tc MCT is a promising approach
to a quantitative description of the structural relaxation for a
large class of liquids comprising fragile and strong glass
formers.

These findings motivate our present work. An extension
of MCT to nonentangled polymer melts[11,21] opens the
possibility to attempt a quantitative comparison also for a
polymeric glass former. Here, we present the first step to-
ward such a comparison for a simulated bead-spring model
of a supercooled polymer melt[22–26]. We discuss various
static structure factors, paying particular attention to the de-
pendence of the structure on the position of a monomer
along the polymer backbone and to correlation functions in-
volving the center of the mass of the chains. This informa-
tion may be used to develop a tractable theory. We will re-
port on that and on the comparison with the simulations in a
forthcoming article[21]. A key aspect of this theory is that
the short-range order of the monomers, as measured by the
main peak of the collective static structure factor, strengthens
with decreasing temperature. The strengthening of the local
packing provides the dominant mechanism causing structural
arrest and glassy dynamics. This mechanism, termed “cage
effect” in simple liquids [4,5], is also at the core of our
theory for polymer melts. In this article, we will thus pay
special attention to structural correlations around the average
spacing between monomers, and to the question of how
chain connectivity affects them.

II. MODEL AND SIMULATION TECHNIQUE

We study a bead-spring model of linear polymer chains
[3,22]. All monomers interact via a truncated and shifted
Lennard-Jones(LJ) potential

ULJsrd = H4efss/rd12 − ss/rd6g + C r , 2rmin

0 r ù 2rmin.
s1d

In the sequel, we will use LJ units(e=1, s=1; furthermore,
Boltzmann’s constantkB=1 and the monomer massm=1).
The constantC=127/4096 is chosen so thatULJ vanishes
continuously atr =2rmin, rmin=21/6 being the minimum of the
nontruncated potential.

In addition toULJ, successive monomers along the poly-
mer backbone interact via a FENE potential[27]

UFENEsrd = −
k

2
R0

2 lnF1 −S r

R0
D2G , s2d

with R0=1.5 andk=30. The superposition of the LJ potential
and FENE potential leads to a steep effective bond potential
with a sharp minimum atrb=0.9606.

This choice of parameters has two important conse-
quences. First, it prevents bonds from crossing each other.
This imposes topological constraints[28] which ultimately
lead to reptationlike dynamics in the limit of long chains
[27,29]. Second, the bond potential locally distorts the regu-
lar arrangement of the monomers because it favors the inter-

monomer distancerb which is incompatible withrmin.
When cooling the melt from highT the incompatibility of

rb and rmin impedes crystallization, but does not preclude it
[30–32]. For the melt to remain amorphous the chains should
also be flexible. This was pointed out in simulations of a
semiflexible bead-spring model in which large bond angles
are energetically favored by a bending potential[31,32]. The
interplay of chain stiffness and excluded volume interactions
suffices to induce crystallization from the melt. Contrary to
that, the chains of our model are flexible. In the temperature
range studied, the end-to-end distancesRe

2.12.3d and the
radius of gyrationsRg

2.2.09d are almost constant, and the
collective static structure factor of the melt is typical of an
amorphous material[23,25].

We analyze time series of isobaric simulations at the pres-
sure p=1 [22,30]. The polymer melt containsn monodis-
perse chains of lengthN=10 in the volumeV. Depending on
temperature(Nosé-Hoover thermostat) n ranges betweenn
=100 andn=120. This corresponds to the following chain
srd and monomer densitiessrmd

0.091ø r =
n

V
ø 0.104,

s3d

0.91ø rm =
nN

V
ø 1.04.

III. THEORETICAL BACKGROUND

A. Basic notations

Let r i
a denote the position of theath monomer in chaini

andRi the position of the center of mass(CM) of chain i,

Ri =
1

N
o
a=1

N

r i
a si = 1, . . . ,nd. s4d

The knowledge ofr i
a and Ri allows us to define various

density fluctuations for the wave vectorq in reciprocal
space: the density fluctuations of monomera,

rasqd = o
i=1

n

expfiq · r i
ag sa = 1, . . . ,Nd, s5d

the density fluctuations of a tagged chaini obtained by sum-
ming over all monomers of the chain,

ri
psqd = o

a=1

N

expfiq · r i
ag, s6d

the density fluctuations created by all monomers of the melt,

rtotsqd = o
i=1

n

o
a=1

N

expfiq · r i
ag, s7d

and the polymer-density fluctuations related to the CM’s of
all chains
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rCsqd = o
i=1

n

expfiq ·Rig. s8d

Density-density correlation functions are well established
means to describe the structure(and the dynamics) of a liq-
uid [33]. For a polymer melt we can derive various such
two-point correlation functions from Eqs.(5)–(8). They are
introduced in the following section.

B. Static structure factors

The density-density correlations at the monomer level
may be characterized by the monomer-monomer(or site-site)
static structure factors

Sabsqd =
1

n
krasqd*rbsqdl. s9d

Here, k·l denotes the canonical average over all configura-
tions of the melt. Since the melt is spatially homogeneous
and isotropic, the structure factors depend only on the modu-
lus of the wave vector,uq u =q.

We can split Eq.(9) into an intrachain and an interchain
part:

Sabsqd = wabsqd + rhabsqd. s10d

The intrachain contribution is given by

wabsqd =
1

nKo
i=1

n

exph− iq · fr i
a − r i

bgjL , s11d

and the interchain contribution by

rhabsqd =
1

nKo
iÞ j

n

exph− iq · fr i
a − r j

bgjL . s12d

These contributions reveal static correlations between mono-
mers belonging to the same chain or to different chains(cf.
Fig. 1).

When averaging over all monomer pairssa,bd we obtain
the collective static structure factor of the melt,

Ssqd =
1

nN
krtotsqd*rtotsqdl =

1

N
o

a,b=1

N

Sabsqd = wsqd + rmhsqd,

s13d

whererm=Nr and

wsqd =
1

N
kri

psqd*ri
psqdl =

1

N
o

a,b=1

N

wabsqd s14d

denotes the static structure factor of a chain and

hsqd =
1

N2 o
a,b=1

N

habsqd s15d

is the Fourier transform of the site-averaged intermolecular
pair-correlation function[33].

Usually, the averaged quantitiesSsqd andwsqd are used to
characterize the structure of a polymer melt. Contrary to that,
we focus here on the monomer-resolved generalizations
Sabsqd andwabsqd. The aim of our study is to understand to
what extent specific monomer-monomer correlations deviate
from the average behavior. Since the structure factorsSabsqd
and wabsqd are important input quantities for the mode-
coupling approach to glassy polymer dynamics[11], the
comparison of Sabsqd and wabsqd with their monomer-
averaged counterparts can suggest suitable approximations
and thus help developing a tractable theory[21].

In addition to density fluctuations of the monomers the
spatial arrangement of the CM’s and the coupling between
the CM and the monomers can be analyzed. We define the
CM-CM structure factor(see Fig. 1)

SCsqd =
1

n
krCsqd*rCsqdl =

1

nKo
i,j=1

n

exph− iq · fRi − R jgjL = 1

+ rhCsqd, s16d

which we split, in analogy to Eq.(13), into self- (1) and
distinct shCd parts. Formally, Eq.(16) is identical to that of
simple liquids[33].

Similarly, the coupling between a monomer and the CM’s
leads to monomer-polymer structure factors:

Sa,Csqd =
1

n
krasqd*rCsqdl =

1

nKo
i,j=1

n

exph− iq · fr i
a − R jgjL .

s17d

Sa,Csqd is the Fourier transform of the(averaged) probability
of finding a sitea at a distancer from the center of a chain.
Following Eqs.(10)–(12) we separate again the intrachain
contribution,

wa,Csqd =
1

nKo
i=1

n

exph− iq · fr i
a − RigjL , s18d

from the contribution involving different chains

FIG. 1. Schematic illustration of the correlation functions de-
fined in Sec. III B.r i

a is the position of theath monomer of chaini
andRi the position of the chain’s center of mass.wcd andwa,C [Eqs.
(11) and (18)] denote intrachain structure factors,hcd andha,C de-
note [Eqs.(12) and (19)] interchain structure factors.SC [Eq. (16)]
is the structure factor of the centers of mass.
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rha,Csqd =
1

nKo
iÞ j

n

exph− iq · fr i
a − R jgjL . s19d

The correlations measured by Eqs.(18) and (19) are illus-
trated in Fig. 1. While the intrachain structure factorwa,Csqd
can also be determined for a single polymer at infinite dilu-
tion [34], the interchainha,Csqd describes howa sites arrange
around the CM of another polymer. When summing over all
monomers and defining

wm,Csqd = o
a=1

N

wa,Csqd, hm,Csqd =
1

N
o
a=1

N

ha,Csqd. s20d

we obtain from Eqs.(17)–(19)

Sm,Csqd = o
a=1

N

Sa,Csqd = wm,Csqd + rmhm,Csqd. s21d

These functions describe the averaged packing of sites
around the center of mass of the sameswm,Cd and of a dif-
ferent shm,Cd polymer, respectively.

C. Three-particle structure factors

Ssqd measures the spatial distribution of two monomers. It
depends on one wave vectorq. Its generalization to a triple
correlation function, the three-monomer structure factor
S3sq ,kd, describes the(averaged) packing of a third mono-
mer which results from fixing the position of two monomers.
S3sq ,kd depends on two wave vectors and is defined by

S3sq,kd

=
1

nN
krtots− qdrtotskdrtotsq − kdl =

1

nN

3K o
i,j ,l=1

n

o
a,b,c=1

N

exphif− q · r i
a + k · r j

b + sq − kd · r l
cgjL ,

s22d

where the vectorq−k =p is the third side of a triangle form-
ing an anglew betweenq andk. The anglew is given by

cosw =
q2 + k2 − p2

2qk
. s23d

S3sq ,kd is the Fourier transform of the three-particle dis-
tribution function, which gives the average density of(other)
segments at a space point if the positions of two segments
are fixed. It is related to a direct correlation functionc3sq ,kd
by the triplet Ornstein-Zernike equation[35]

S3sq,kd = SsqdSskdSsuq − k udf1 + rm
2 c3sq,kdg. s24d

Often, when consideringS3 for wave vectors corresponding
to the average particle distance, it is assumed that there are
no three-body correlations which are not contained in the
product of two-particle correlation functions. This so-called
convolution approximation[35,36]—note that it differs from
the Kirkwood superposition approximation which becomes
valid for large distances[33]—implies that the triplet direct

correlation function vanishes,c3sq ,kd;0. Here, we want to
test this approximation forS3sq ,kd and for the polymer
three-monomer structure factorw3sq ,kd. w3sq ,kd is defined
analogously toS3 with rtot replaced byri

p in Eq. (22), that is,
only the termi = j = l of the sum in Eq.(22) is taken into
account.

For a homogeneous and isotropic systemS3 depends on
the moduli of the three wave vectors only,S3sq ,kd
=S3sq,k,p= uq−k ud. To determineS3sq,k,pd we utilized a
method closely related to the one proposed in Ref.[20]. The
triple of moduli sq,k,pd satisfying Eq.(23) is discretized in
bins of width Dq=Dk=Dp=0.2. In each bin 100 vector
tupleshsq ,kduuqu=q, uk u=k, upu=pdj are chosen at random for
each configuration andSsq,k,pd is calculated as the average
over this set of vectors and all configurations. Data were
accumulated over 1155 configurations atT=0.47 [37].

IV. RESULTS ON TWO-POINT CORRELATION
FUNCTIONS

A. Static properties at the monomer level: Site-averaged
quantities

We discuss the static structure factor of the melt and the
corresponding self-parts and distinct parts[Eqs. (10)–(15)].
For T,1 andqø20, results forSsqd and wsqd have been
presented previously[3,23,25,26]. Here, we extend the
analyses up toq=50 and considerably improve the statistics
(averages over more than 1000 configurations). This effort
was necessary to use the static quantities in MCT calcula-
tions which require a largeq-range and good statistics.

1. Static structure factor of the melt

Figure 2 showsSsqd for temperatures above the critical
temperature of MCTsTc.0.45d. In this T interval the struc-
ture of the melt is typical of a disordered, dense system. Due
to the weak compressibility of the meltSsqd is small in the
limit q→0. As q increases,Ssqd increases toward a maxi-
mum which occurs aroundqmax.7.15 in our model. Thisq

FIG. 2. Collective static structure factorSsqd of the melt vs the
modulus of the wave vectorq [Eq. (13)]. The temperatures shown
are: T=1 (dashed line), 0.7, 0.65, 0.6, 0.55, 0.52, 0.5, 0.48, 0.47,
and 0.46(solid line). Inset: First maximum ofSsqd, Ssqmaxd, vs T
sqmax<7.15d. The dashed horizontal line indicates the Hansen-
Verlet criterion for the glass transition of hard spheres within the
ideal MCT fSsqmaxd<3.54g [38].
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value corresponds to the length scale of the monomer diam-
eter s=1d. Thus, the dominant contribution toSsqmaxd comes
from the amorphous packing in the nearest-neighbor shell
around a monomer. On cooling, Fig. 2 indicates that no long-
range structural correlations develop in the melt. Only its
density increases and the packing becomes tighter. Two fea-
tures reflect these changes: the amplitude of the peakSsqmaxd
grows and its positionqmax shifts to larger values. Close to
qmax, the dependence ofSsqd on T is most pronounced.

The increase ofSsqmaxd with decreasingT may be related
to the(empirical) Hansen-Verlet freezing criterion[39]. This
criterion states that a liquid will condense to a solid phase
when Ssqmaxd exceeds a threshold value. For crystallization
this threshold isSsqmaxd<2.85 [40]. For the glass transition
of hard spheres within the ideal MCT one findsSsqmaxd
<3.54[38]. The latter value agrees very well with our simu-
lation result forSsqmaxd at T=0.46(see inset of Fig. 2), indi-
cating that the melt is close to theTc of the ideal MCT.
Indeed, our previous studies[3,23–26] suggestTc.0.45.

This interpretation of the structure factor only involves
packing arguments which could also be put forward for
atomic liquids. To obtain a better insight into the role of
chain connectivity we splitSsqd into intrachain(self) and
interchain(distinct) contributions[Eqs. (10)–(15)]. We dis-
cuss these contributions in the next two sections.

2. Intrachain structure

Figure 3 shows the intrachain contribution toSsqd, the
structure factorwsqd of a polymer, atT=0.46 andT=1. Both
temperatures yield almost identical results for allq. So, data
at intermediateT are not included in the figure.

The independence ofT may be rationalized in the follow-
ing way. If q→`, local rapid variations will determine the
behavior ofwsqd. In this limit, we can approximate Eq.(14)
by

wsqd < 1 +
2

N
sN − 1dwaa+1sqd sqlarged, s25d

where we also assumed that the nearest-neighbor contribu-
tion waa+1sqd is independent ofa. This assumption is well

justified for our model, as a glance at Fig. 6 shows.waa+1sqd
can be evaluated by exploiting thatur a−r a+1u< rb due the
stiff bond potential of our model. Thus,

waa+1sqd =K sinsqur a − r a+1ud
qur a − r a+1u L <

sinsqrbd
qrb

. s26d

To lowest order, we therefore expect

wsqd < 1 +
2

N
sN − 1d

sinsqrbd
qrb

sq larged. s27d

For smallq-values polymer physics suggests that the De-
bye functionwDsqd [28,41] provides a reasonable description
of wsqd,

wDsqd = NfDsq2Rg
2d, fDsxd =

2

x2fe−x + x − 1g. s28d

The Debye theory assumes a Gaussian distribution for all
distances along the backbone of the chain. This assumption
correctly reflects the random-walk-like structure of(long)
polymers on intermediate and large length scales in the melt.
However, at largeq where the precise form of the interaction
potential matters, it cannot apply.

The approximations(27) and (28) are compared to the
simulation data in Fig. 3. For smallq, the scattering is deter-
mined by the size of the polymer only. In this limit, the
Debye theory reproduces the exact resultwDsqd=Ns1
−q2Rg

2/3d. So, it has to coincide with the measuredwsqd if
q,1/Rg.0.69 (see inset of Fig. 3. Furthermore, the theory
and the simulation should also agree for 1/Rg!q!1/rb.
This q range probes the random-walk-like internal structure
of a polymer, where bothwsqd and wDsqd scale as,q−2.
However, since our chains are short, the length scalesrb and
Rg are not sufficiently separated for this behavior to be ob-
served. Instead,wsqd crosses over to regular oscillations
which are compatible with Eq.(27) for q*8.

Figure 3 shows that the superposition of Eqs.(27) and
(28) approximately describes the simulation data. Thus, in
our model the main features ofwsqd are determined by two
length scales,rb andRg. SinceRg depends only weakly onT
and rb is independent ofT, the almost perfect agreement of
the structure factors forT=0.46 andT=1 can be understood.

3. Interchain structure

If the intrachain contribution toSsqd is independent ofT,
the temperature dependence ofSsqd must result from inter-
chain correlations. Figure 4 supports this expectation. The
distinct partrmhsqd [Eq. (13)] exhibits liquidlike oscillations
whose extrema become more pronounced on cooling. This
trend is especially visible aroundqmaxs.7.15d, suggesting
that the glassy behavior of our model is driven byhsqd only.
That is, by nearest neighbors which are not bonded to one
another. This finding is not unreasonable. As the distance
between successive monomers along the backbone is almost
fixed, only nonbonded neighbors can pack more tightly and
reinforce the cage with decreasingT.

We support this interpretation by the following argument:
If our system was a simple liquid, we would havewsqd=1,

FIG. 3. Polymer static structure factorwsqd [Eq. (14)] at the
lowest and the highest temperature,T=0.46 (solid line) and T
=1.0 (dashed line), respectively. The simulation data are compared
to the Debye formula[Eq. (28), dotted line] and to the large-q
approximation, Eq.(27) (rb=0.9609, dash-dotted line). The inset
magnifies of the small-q behavior ofwsqd.
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and rmhsqd=Ssqd−1 would be exact. The inset of Fig. 4
shows that this simple-liquid-like approximation represents a
good description forq*6. For smallerq, deviations are
found. Here,Ssqd becomes vanishingly small[Ssqd,10−2,
see Fig. 2] and polymer-specific effects, i.e., the correlation
hole [42], determine the distinct part:rmhsqd<−wsqd. The
correlation hole implies that the probability of finding mono-
mers of other polymers inside the volumeVc occupied by a
chain is decreased. This effect arises because the probability
of finding the monomers of a chain in its own volumeVc is
enhanced, and intramolecular and intermolecular correlations
have to compensate each other to render the melt incom-
pressible[42,43].

B. Static properties at the monomer level: Site-resolved
quantities

1. Direct correlation function

For simple liquids the direct correlation function is usu-
ally introduced through the Ornstein-Zernike equation[33].
For molecular liquids Chandler and Andersen[44] extended
the Ornstein-Zernike approach to reflect the contribution
from the intramolecular correlationswabsqd. The resulting
generalized site-site Ornstein-Zernike equation—also re-
ferred to as “reference interaction site model”(RISM)—is
given by [33]

habsqd = o
x,y=1

N

waxsqdcxysqdfwybsqd + rhybsqdg. s29d

Here, cabsqd is the direct correlation function between the
sitesa andb. Inserting Eq.(29) into Eq. (10) we obtain

rcabsqd = fwab
−1sqd − Sab

−1sqdg, s30d

whereXab
−1sqd denotes thesa,bd element of the inverse of the

matrix Xsqd.
The difficulty in dealing with site-site correlation func-

tions arises from the dependence on the indicessa,bd. This
leads toOsN2d coupled equations which cannot be handled
for large N. However, one can argue that, for long chains,
end effects oninterpolymer correlations should be small,
suggesting to treat all sites of a homopolymer equivalently.

(This simplification becomes exact for ring homopolymers.)
This equivalent-site approximationis usually invoked for
cabsqd, i.e.,

cabsqd = csqd sequivalent-site approximationd. s31d

Equation(31) represents the principal idea of the polymer
RISM (PRISM) theory developed by Schweizer and co-
workers[43].

Inserting the assumption(31) into Eq. (29) we obtain
from Eq. (15) the so-called PRISM equation for the site-
averaged pair-correlation function

hsqd = wsqdcsqdfwsqd + rmhsqdg. s32d

Equations(13) and (32) provide an expression forcsqd in
terms ofwsqd andSsqd:

rmcsqd =
1

wsqd
−

1

Ssqd
. s33d

Figure 5 examines the validity of the equivalent-site ap-
proximation by comparing Eqs.(30) and (33). Apparently,
the approximation is well satisfied, except for functions in-
volving the chain ends(a=1 or a=N). Here, we find slight
deviations close toqmax and more pronounced ones forq
&5. From the point of view of MCT, the important wave-
vector regime is aroundqmax. Thus, Fig. 5 suggests that, for
our model, MCT equations for the dynamics of the melt can
be derived by assuming Eq.(31) without introducing a large

FIG. 4. Distinct contribution to the static structure factorrmhsqd
[Eq. (13)] at T=0.46, 0.65, and 1.0. Inset: Comparison ofrmhsqd
with Ssqd−1 and −wDsqd at T=0.46 (see text for further details).

FIG. 5. Examination of the equivalent-site approximation, Eq.
(31), at T=0.47. The solid lines in both panels denotecsqd deter-
mined from the simulation results forSsqd and wsqd via Eq. (33).
The dashed lines representc11sqd (upper panel) and c15sqd (lower
panel), the dotted linesc22sqd, c33sqd, c44sqd, c55sqd (upper panel)
andc25sqd, c35sqd, c45sqd, c55sqd (lower panel). The site-site direct
correlation functionscabsqd are calculated from the simulation re-
sults for Sabsqd and wabsqd via Eq. (30). The insets magnify the
region close toqmax.
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error [21]. In the following, we want to use Eq.(31) to in-
terpret the intermolecular site-site correlations of our model.

2. Intrachain structure

If wsqd does not depend on temperature, we may expect
the same feature for all componentswabsqd. Indeed, we find
that wabsqd is (almost) independent ofT. Thus, we concen-
trate on one temperature in the following.

Figure 6 depictswabsqd at T=0.47 for various monomer
pairs sa,bd. We find that the explicit dependence ofwabsqd
on the site indices is negligible for all wave vectors. To a
very good approximation,wabsqd only depends on the dis-
tance ua−bu, a feature also found for a model of freely
jointed hard-sphere chains[45] and for the Gaussian approxi-
mation

wab
G sqd = expf− q2ua − bus2/6g. s34d

To compare Eq.(34) with the simulation data we identify the
statistical segment lengths with s2=Re

2/N=6Rg
2/N [28].

This assumption is valid for(long) chains in the melt. Figure
6 shows that Eq.(34) only provides a good approximation
for small q. [The same result was also found when compar-
ing wsqd andwDsqd.] With increasingq, wabsqd decays faster
than wab

G sqd, if ua−bu.1, and becomes negative before ap-
proaching 0 from below. This undershoot shifts to largerq
and increases in amplitude, asua−bu decreases toward 1.
Adjacent monomers along the backbone of the chainsua
−bu=1d exhibit long-range oscillations which are well de-
scribed by Eq.(26).

3. Interchain structure

Figure 7 shows the site-resolved pair correlationshabsqd
[Eqs. (10) and (12)] at T=0.47. Forq*15, habsqd is inde-
pendent of the monomer index and coincides with the site-
averagedhsqd. Contrary to that, we find a dependence on
sa,bd aroundqmax and particularly forq&5.5. While pairs
resulting from inner sitess1,a,b,Nd, excepth22sqd, are
still very close to each other, differences occur for correla-
tions comprising an end monomer. Forq<4, habsqd exhibits

a shoulder. If an end monomer is involved, the amplitude of
the shoulder decreases and is smallest for the correlation of
two chain ends(h11).

Qualitatively, the site dependence aroundqmax may be
explained by the following argument. As the analysis in Sec.
IV C 2 will show, a middle segment is buried deeply in the
polymer coil and is closer to the CM of its chain than is an
end segment. Thus, it is not surprising that end monomers
have stronger local intermolecular correlations, viz. that
rh11sqd deviates more from zero aroundqmax than does
rhaasqd for middle segments.

A quantitative explanation of the site dependence of
habsqd may be obtained by PRISM theory. From Eqs.(10)
and (29) it follows that

Sabsqd = fhI − rwsqdcsqdj−1wsqdgab,

s35d
habsqd = fwsqdcsqdhI − rwsqdcsqdj−1wsqdgab,

whereI denotes the unit matrix. Thus, even with the assump-
tion cabsqd=csqd, a site dependence ofSabsqd andhabsqd re-
sults from chain connectivity due to the matrix structure of
wabsqd. For example, forhabsqd one finds[from Eqs. (13),
(29), and(32)]

habsqd =
hsqd
wsqd2Fo

x=1

N

waxsqdGFo
y=1

N

wbysqdG . s36d

Figure 8 compares theory and simulation for some represen-
tative pair-correlation functionshabsqd. We find thathabsqd is
well described by Eq.(36). This explains why the correlation
hole inhabsqd for end segments is slightly more narrow than
for middle segments. Furthermore, according to Eq.(36)
habsqd should exhibit the symmetry:ha,bsqd=ha,N−b+1sqd.
This symmetry is tested in Fig. 8 fora=2, b=1 and found to
be well borne out.

A corresponding analysis forSabsqd (not shown) finds the
same agreement between the PRISM theory and the simula-
tion data. These results indicate that a complete description
of the static structure of our polymer melt can be achieved

FIG. 6. Static structure factorwabsqd of the monomer pairsa,bd
at T=0.47. a and b are monomers of the same chain. Note that
wabsqd depends onua−bu only. The simulation data forua−bu=1 (
a=1,b=2 anda=5,b=6) are compared with Eq.(26) (circles). For
separationsua−bu=1, . . . ,5 the Gaussian approximation, Eq.(34), is
also shown(dotted lines).

FIG. 7. Interchain static structure factorrhabsqd at T=0.47 for
different pairssa,bd [Eq. (13)]. rhabsqd depends onsa,bd at qmax

.7.15 and forq&5.5. The correlation of two chain endssa=b
=1d behaves differently in comparison to all other curves. The av-
erage over all monomersrhsqd is also included.
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using only the site-independent interchain direct correlation
function csqd and the matrix of the single-chain structure
factorswabsqd.

C. Static structure involving the center of mass

1. Structure factor of the center of mass

At low temperature, the motion of the CM slows down
similarly to that of the monomers[24]. For the monomers,
we interpreted this behavior as a consequence of the tighter
packing in the nearest-neighbor shells. If a tighter packing of
the polymer coils and concomitant coil-caging was respon-
sible for the sluggish dynamics of the chains, one could ex-
pect to find the signature of a stronger packing in the
CM-CM structure factorSC. Alternatively, polymer MCT
[11,21] suggests that the slowing down of the CM originates
from the segment dynamics which “enslaves” the CM mo-
tion. For this view to apply, little or no variation withT of
the CM correlations is required, as the intermolecular seg-
ment correlations,rmhsqd (Fig. 4), drive the(segment) cag-
ing.

Recently, the spatial correlations between the CM’s have
been addressed in several studies[47–51]. References
[47,48] point out that deviations of the CM motion from free
diffusion, observed for displacements smaller than the chain
size already at highT, could be caused by intermolecular
interactions between the centers of mass. Approximately,

these interactions are given by the potential of mean force
[33], i.e., by the CM-CM pair distribution function.

This function was also discussed in the context of devis-
ing efficient coarse-grained simulation models for semidilute
polymer solutions and polymer-colloid mixtures[49,50]. In
these studies, the attempt is made to represent the polymer
coils as soft, penetrating spheres. The spheres interact via an
effective pair potential derived from the CM-CM distribution
function. For this distribution function Ref.[51] suggests a
PRISM approximation which relatesSCsqd to the structure
factors of the monomers. In the Appendix we sketch the
main ideas of this approach and discuss the validity of the
underlying assumptions for our polymer melt. Here, we only
compare the result of the calculation,

SCsqd < 1 +
1

N

wm,Csqd2

wsqd2 rmhsqd, s37d

with our simulation data[wm,Csqd is defined in Eq.(20)].
Figure 9 showsSCsqd for all investigated temperatures,

together with Eq.(37). Starting from a small valueskT

=isothermal compressibilityd,

lim
q→0

SCsqd =
kn2l − knl2

knl
=

1

N
kBTrmkT, s38d

the structure factor increases toward a small peak before it
approaches the ideal gas value 1 without any further oscilla-
tions. Although this peak is indicative of some preferred dis-
tance between the chains, the effect is very weak. Further-
more, SCsqd is independent ofT. This implies that the
sluggish dynamics of the CM is not related to a tighter pack-
ing of the chains at lowT. Rather it should be interpreted as
a consequence of the slowing down of the monomer motion,
which, due to chain connectivity, entails the glassy behavior
of the CM.

FIG. 8. Comparison of the site-site intermolecular pair-
correlation functionshabsqd determined from the simulation data at
T=0.47(circles) and from the PRISM theory(gray solid lines) [46].
Some curves are shifted vertically for clarity. Note thath21sqd
=h210sqd in the PRISM theory(see text for details).

FIG. 9. Static structure factor of the CMSCsqd at all simulated
temperatures, i.e.,T=0.46, . . . ,1 (solid lines). The dashed line
shows Eq.(37) calculated from the simulation data forwm,Csqd,
wsqd, andhsqd at T=1. The dotted horizontal line indicates the limit
of SCsqd for q→0 [Eq. (38)]. kBTrmkT was read off from the small-
q behavior of Ssqd (see Fig. 2). The dotted vertical line shows
1/Rg.0.69 sRg.1.45d.
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As observed in Ref.[51], we also find that the PRISM
approximation(37) provides a good description of the simu-
lation data, except forq close to the peak position, where
SCsqd is slightly underestimated. Thus, we may use Eq.(37)
to interpret the finding thatSCsqd does not change on cool-
ing. Equation(37) contains the prefactorwm,Csqd2/wsqd2,
which depends on intrachain correlations only, and is thus
independent ofT for our model. Figure 10 compares
wm,Csqd2/wsqd2 with the Gaussian approximation[see Ref.
[52] and Eq.(28)]

wm,C
G sqd

wDsqd
=

ÎpsqRgd3e−q2Rg
2/12erfsqRg/2d

2se−q2Rg
2
+ q2Rg

2 − 1d
. s39d

Quantitatively, Eq.(39) is not very accurate, presumably be-
cause our chains are too short.[The results for semidilute
solutions of long chains obtained in Ref.[51] appear to agree
better with Eq.(39).] Qualitatively however, the Gaussian
approximation reproduces the simulation results. It starts at
1, has a maximum aroundq<1.5, and vanishes forq*5.
Thus, the factorwm,Csqd2/wsqd2 eliminates the contributions
coming from the local liquidlike structure of the melt[i.e.,
from hsqd, see Fig. 4] and, along with that, a possible depen-
dence ofSCsqd on T in our model.

2. Correlation between the monomers and the CM

Figure 11 shows the site-resolved monomer-CM structure
factors. We see that the intrachain contributionwa,Csqd de-
cays more slowly for the middle monomersa=5d than for
the end monomersa=1d. This observation may be rational-
ized by the Gaussian approximation[34,53]

wa,C
G sqd = expH−

q2Rg
2

3
F1 − 3

a

N
+ 3S a

N
D2GJ . s40d

Equation(40) is symmetric undera↔N−a. That is, chain
ends are indistinguishable. The argument of the exponential
is a parabola with a minimum atN/2. Thus, in qualitative
agreement with the simulation data,wa,C

G sqd decreases more
slowly with increasingq for the middle monomer than for
the end monomers. In real space, this implies that the middle

monomer is on average closer to the CM than the chain end
[53].

Figure 11 also shows the pair-correlation functionha,Csqd
and the sum of intrachain and interchain contributions
Sa,Csqd. Sa,Csqd is related to the probability of finding a
monomer at a certain distance from the CM of some chain,
while ha,Csqd measures this probability if the CM belongs to
a different chain than that of the monomera. Qualitatively,
rha,Csqd appears to be the mirror image ofwa,Csqd with re-
spect to theq axis so thatSa,Csqd is small. This agrees with
the naive expectation that there is little correlation between
the positions of the monomers and the CM’s. However,
Sa,Csqd is not completely structureless. It exhibits a maxi-
mum for the middle monomersa=5d, but a minimum for the
end monomersa=1d. Quite surprisingly, we find a positive
correlation of the middle segments and the CM’s. On aver-
age, the probability of finding a middle(an end) monomer
around the CM of a chain is increased(decreased) relative to
random packing. Intramolecular correlations are thus can-
celed by intermolecular ones only at large distances(small
q). At intermediate distances the intrachain density distribu-
tion is either too little or too strongly compensated by the
surrounding polymers. By averaging over all monomers
along the backbone of the chain this site dependence of
Sa,Csqd is suppressed to a large extent. This means that a
PRISM-like theory using the monomer averagedSm,Csqd (see
Fig. 16) only, could underestimate the monomer-CM cou-
pling.

However, this does not imply that the PRISM theory can-
not be applied to explain the site dependence ofha,Csqd.
Equation(37) results from the assumption that the CM may
be treated as an additional, noninteracting site in the PRISM
approach. That is, the monomer-CM and the CM-CM direct
correlation functions are supposed to vanish; onlycsqd is
kept. Using this assumption andSm,C/S=wm,C/w (see Ap-
pendix) we find from Eq.(29)

FIG. 10. wm,Csqd2/wsqd2 vs q at T=0.46 (solid line) and T=1
(dashed line). As wsqd does not depend on temperature(see Fig. 3),
the figure indicates that the monomer-CM correlationwm,C is also
independent ofT. The dotted line shows the Gaussian approxima-
tion, Eq. (39). The dotted vertical line indicatesq=1/Rg.0.69
sRg.1.45d. FIG. 11. Site-resolved structure factors resulting from

monomer-CM correlations[Eqs. (17)–(19)]: wa,Csqd (intrachain
part), rha,Csqd (interchain part), and Sa,Csqd (all chains). These
structure factors are(almost) independent ofT. The data shown
were obtained atT=0.47. Circles indicate the Gaussian approxima-
tion [Eq. (40)] for wa,Csqd at a=1 (chain end) and a=5 (middle
monomer). The thickness of the lines and the symbols increases
from a=1 to a=5.
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ha,Csqd =
wm,Csqd
wsqd2 Fo

x=1

N

waxsqdGhsqd. s41d

Figure 12 illustrates that Eq.(41) is in good agreement with
the simulation data. This allows two conclusions: First, Fig.
12 emphasizes again that the structural properties of our
model may be understood in terms of the site-independent
interchain direct correlation function and site-dependent in-
trachain structure factors. Second, the finding thatha,Csqd
does not depend on temperature for our model(Fig. 11) may
be explained by the same argument put forward forSCsqd. It
is related to the intrachain contributionwm,C/wsqd which is
independent ofT and suppresses the temperature dependence
of hsqd for wave vectors aroundqmax (see Fig. 10).

V. RESULTS ON THREE-PARTICLE CORRELATION
FUNCTIONS

Recently, triple correlations in simple and network glass-
forming liquids have been investigated[20]. This study
shows that, while the convolution approximation[Eq. (24)
with c3=0] is very good for simple liquids, it fails to provide
an accurate description of the cage structure in silica. As
silica is a network-forming liquid, nearest-neighbor bonds
make an important contribution to the local structure in the
liquid. This is similar to the chain connectivity in a polymer
melt. So, we investigate the importance of triple correlations
for our model by comparing the three-monomer structure
factor with its convolution approximation for selected sub-
sets ofsq,k,pd.

Figure 13 presents the three-monomer structure factor of
the melt S3sq,q,qd and of the chainsw3sq,q,qd for the
choice that the three vectorsq, k, andp form an equilateral
triangle characterized by the length of its sideq. We find that
the convolution approximation provides a very good descrip-

tion for the triple correlation of the polymers, the amplitude
of the oscillations being slightly underestimated, however.
For q&20,S3sq,q,qd is equally well represented by the con-
volution approximation, expect for a sharp dip atq<6.3,
revealing some anticorrelation at thisq value. Forq*20 the
interpretation of the data is difficult due to the high noise
level. In this region, we find thatS3sq,q,qd is systematically
larger thanSsqd3 and even stays above unity, the theoretical
large q limit of both quantities. This difference must be at-
tributed to insufficient statistics[37]. Despite this proviso,
the convolution approximation represents a fairly good de-
scription of the three-monomer correlations for the choice of
wave vectorssq,q,qd.

In order to investigate the angular dependence of the
triple correlations we follow a suggestion made in Ref.[35].
We determineS3 andw3 for the triple of modulifq,k=q,p
=qÎ2s1−coswdg, i.e., for isosceles triangles with two sides
of lengthq enclosing an anglew [Eq. (23)].

Figure 14 shows the simulation results and the convolu-
tion approximation as a function of cosw for variousq cor-
responding to maxima and minima positions of the three
point structure factors(cf. Fig. 13). As found before, the
agreement betweenw3 and the convolution approximation is
very good, except atq=24.9 where the approximation yields
oscillations that are absent inw3. Similarly for mostq values,
S3 and its convolution approximation are fairly close to one
another. Barringq=24.9, for which the quality of the com-
parison is hard to judge due to the noise inS3, noticeable
deviations are obtained for wave vectors close toqmax. This
might suggest that the cage structure in the cold melt im-
poses triple correlations which are different than those pre-
dicted by the convolution approximation. To test this conjec-
ture the statistics of the data should be improved
considerably, which is currently hard to achieve[37].

VI. SUMMARY AND CONCLUSIONS

We explored static properties of a supercooled, nonen-
tangled polymer melt consisting of flexible chains. The tem-

FIG. 12. Comparison of the monomer-CM intermolecular pair-
correlation functionha,Csqd determined from the simulation data at
T=0.47 fora=1 anda=5 (circles) and from the PRISM theory[Eq.
(41), solid lines]. The data forh1,Csqd are shifted vertically for
clarity.

FIG. 13. Comparison of the three-monomer structure factor
(thin lines) for the meltS3sq,q,qd and for the polymersw3sq,q,qd,
with the respective convolution approximations(thick lines) Ssqd3

andwsqd3 at T=0.47. The simulation results for the triple correla-
tions are not smoothed. The lower statistical accuracy ofS3sq,q,qd
compared toSsqd3 is clearly visible, especially at largeq.
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peratures studied range from the high-T, normal liquid state
of the melt to the supercooled state close to, but above the
critical temperature of MCTsTc.Tgd. Our analysis utilizes
various structure factors characterizing spatial correlations,
on different length scales, between the monomers, between
the monomers and the CM’s, and between the CM’s. The
main findings of our work may be summarized as follows:

Due to the flexibility of the chains in our model(e.g., no
bond angle or torsional potential), their conformational prop-
erties remain essentially unchanged on cooling. Thus, all in-
trachain structure factorswsqd, wabsqd, andwa,Csqd only de-
pend very weakly onT (Figs. 3, 6, and 11).

However, not only the intrachain, but also the interchain
correlation functions involving the CM,SCsqd and ha,Csqd,
are (almost) independent ofT (Figs. 9 and 11). We explain
this finding by PRISM theory which relatesSCsqd andha,Csqd
to the intrachain structure by a term containingwm,C/wsqd.
This ratio is (almost) independent ofT (Fig. 10) and sup-
presses the temperature dependence of the interchain corre-
lations on the local scale of the nearest-neighbor shells.

The CM-CM structure factorSCsqd is fairly featureless
(Fig. 9). Outside the small-q regime reflecting the low com-
pressibility of the melt,SCsqd quickly approaches the ideal
gas behavior,SCsqd=1. This shows that the chains are soft,
interpenetrating objects whose spatial arrangement does not
change on cooling. For our model, the slowing down of the
CM motion, observed in previous works[24], is thus not
related to a tighter packing of the polymers at lowT.

Correlations between the monomers are reflected by the
collective structure factorSsqd. Ssqd exhibits liquidlike oscil-
lations which become more pronounced with decreasing
temperature(Fig. 2). This signature of a tighter packing in
the nearest-neighbor shells results from the interchain contri-

bution hsqd (Fig. 4). Thus, the sluggish dynamics of our
model is driven by the nearest neighbors that are not directly
bonded to each other. In this respect, our polymer melt cor-
responds to a simple glass-forming liquid.

Another result supports this correspondence. The convo-
lution approximation which factorizes the three-particle
structure factorsS3sq,k,pd in the productSsqdSskdSspd is
generally invoked in the mode-coupling theory for the glass
transition. Several studies show that this approximation is
well justified for simple glass formers[20,54], but not for
structurally more complicated ones, such asortho-terphenyl
[17] or silica [20]. In our model we find, analogously to
simple liquids, that the convolution approximation works
quite well, except forS3sq,k,pd at intermediateq (close to
qmax) and for certain angles between the wave vectors(Fig.
14). To what extent these deviations could be important in a
mode-coupling calculation is hard to estimate quantitatively
(due the lack of sufficient statistics[37]).

The analysis of the monomer-resolved structure factors
shows that the intrachain contributionwabsqd depends, to a
very good approximation, only on the distanceua−bu be-
tween the monomerssa,bd along the backbone. Thus, chain
end effects are not very important for the intramolecular
structure of our model. On the other hand, the interchain
structure factorhabsqd depends explicitly on the monomer
pair sa,bd. The site dependence ofhabsqd and ofha,Csqd may
be explained by PRISM theory which assumes that the direct
correlation function is independent of the monomer index
(Figs. 8 and 12). By calculating the site-site and site-
averaged direct correlation functions we test this assumption
and verify that it represents a good approximation(Fig. 5).
This shows that the structural properties of our model, even
subtle monomer-monomer and monomer-CM correlations,
may be calculated from the site-averaged interchain direct
correlation function and the site-dependent intrachain struc-
ture factors, both of which are determined in the simulation.
A similar agreement between PRISM theory and computer
simulations of coarse-grained polymer models was also
found in other studies[45,51,55,56]. In a forthcoming article,
we will exploit the results of the present work to propose and
test a mode-coupling theory for the dynamics of our super-
cooled polymer melt.
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FIG. 14. w3fq,q,p=qÎ2s1−coswdg (top) and S3fq,q,p
=qÎ2s1−coswdg (bottom) vs cosw for some selectedq values at
T=0.47. The simulation data forw3 andS3 are represented by thin
lines, the convolution approximation[Eq. (24) with c3=0] by thick
lines. Note that the data forS3sqd at q=7.1 are rescaled by a factor
of 0.1.
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APPENDIX: PRISM APPROXIMATION FOR THE
STRUCTURE FACTOR OF THE CHAIN’S CENTER

OF MASS

The recent work by Krakoviacket al. [51] uses PRISM
theory to calculate the CM structure factorSCsqd from mono-
mer correlation functions. This approach was found to com-
pare well with simulation data of(long) chains in semidilute
solution. For polymer melts Krakoviacket al.did not test the
theory and even mention the caveat that the correlation be-
tween the CM and the monomers could be different. Here,
we suggest that their theory also yields a reasonable approxi-
mation of SCsqd for polymer melts. In the following, we
sketch the main ideas of the approach of Ref.[51] and test
the basic assumptions against our simulation results.

The starting point of Ref.[51] consists in introducing the
center of mass as an additional, noninteracting site. This step
generalizes the functionsh, c, w, andS [Eqs.(13)–(15) and
(33) to 232 matrices

h = S Nhm,m ÎNhm,CM

ÎNhm,CM hCM,CM
D , sA1d

c = S Ncm,m ÎNcm,CM

ÎNcm,CM cCM,CM
D , sA2d

w =1 wm,m

1
ÎN

wm,CM

1
ÎN

wm,CM wCM,CM
2 , sA3d

S =1 Sm,m

1
ÎN

Sm,CM

1
ÎN

Sm,CM SCM,CM
2 . sA4d

Here, the indices “m,m”, “m,CM”, and “CM,CM” denote
the monomer-monomer, monomer-CM, and CM-CM corre-
lations, respectively. By definition, all matrices are symmet-
ric. With the notation of Sec. III B we have the following
identities

hm,m= h, hm,CM = hm,C, hCM,CM = hC,

wm,m= w, wm,CM = wm,C, wCM,CM = 1, sA5d

Sm,m= S, Sm,CM = Sm,C, SCM,CM = SC.

The matrices of correlation functions are related to each
other by Eqs.(30) and (35), i.e.,

rcsqd = w−1sqd − S−1sqd, sA6d

hsqd = wsqdcsqdfwsqd + rhsqdg. sA7d

Using Eq.(A5) we find from Eq.(A6)

rmcm,m=
1

w − wm,C
2 /N

−
1

S− Sm,C
2 /sNSCd

,

rmcm,CM =
− wm,C

w − wm,C
2 /N

+
Sm,C

SCS− Sm,C
2 /N

, sA8d

FIG. 15. Direct correlation functions vsq at T=0.47. The cor-
relation functionscm,msqd, cm,CMsqd, andcCM,CMsqd are calculated
from Eq. (A8). The results of this calculation are numerically reli-
able for q*1 [57]. Additionally, the figure shows the monomer-
monomer direct correlationcsqd given by Eq.(33) and the CM-CM
direct correlation functioncCsqd defined fromSCsqd by rcCsqd=1
−1/SCsqd. The monomer-monomer direct correlation functions
cm,msqd andcsqd are indistinguishable from one another(for q*1
[57]). Forq→0, rmcsqd andrcCsqd tend to the limits[see Eqs.(32)
and (38)]: Nrmcsq→0d=1−N/kBTrmkT=rcCsq→0d (<−840 for
T=0.47).

FIG. 16. Average monomer-CM static structure factorSm,Csqd
[Eq. (21)] vs q. The solid line represents the simulation results at
T=0.47. The dashed line is the PRISM predictionSm,C

PRISMsqd
=wm,CsqdSsqd /wsqd, where the right-hand side was calculated from
the simulation. Although the simulatedSm,Csqd is fairly noisy, the
comparison still suggests that there are systematic deviations be-
tween Sm,Csqd and Sm,C

PRISMsqd for q&6.5. These deviations come
from the assumption of Eq.(A9): the direct correlation functions
involving the CM become truly 0 only forq*6.5. The deviations
might be responsible for the differences found between the simu-
latedSCsqd and Eq.(A10) at q<3 [see Fig. 9; we could not test this
hypothesis due to insufficient statistics ofSm,Csqd]. However, they
do not appear to hamper the good agreement between the simula-
tion results and the PRISM predictions in Figs. 9 and 12.
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rcCM,CM =
1

1 − wm,C
2 /sNwd

−
1

SC − Sm,C
2 /sNSd

.

Note thatrm=Nr [Eq. (3)]. In Ref. [51] it is assumed that

cCM,CM ; 0, cCM,m = cm,CM ; 0, sA9d

and onlycm,mÞ0 is retained. This implies that the centers of
mass interact neither with each other nor with the monomers.

To test the validity of this assumption we calculated the
right-hand side of Eq.(A8) from the simulation data and
checked whether the direct correlation functions involving
the CM are small compared tocm,m. Figure 15 shows that the
monomer-monomer direct correlation function is indeed

(much) larger than the other components ofc, at least for
q*1 [57]. Thus, Eq.(A9) appears to be a reasonable ap-
proximation for our model in theq range, whereSCsqd sub-
stantially deviates from its small-q limit, Eq. (38) (for a more
precise test see Fig. 16).

Inserting Eq.(A9) into the Ornstein-Zernike equation for
h [Eq. (A7)] and using Eqs.(A5) and (13) we recover Eq.
(33) for cm,msqd f=csqdg. Furthermore, if we insert Eq.(A9)
into Eq. (A8), we obtain the relationSm,C=wm,CS/w (for a
test see Fig. 16) from the second and the third line of Eq.
(A8). Using this relation and Eq.(33) in the first line of Eq.
(A8) we find

SCsqd = 1 +
1

N

wm,Csqd2

wsqd2 fSsqd − wsqdg

= 1 +
1

N

wm,Csqd2

wsqd2 rmhsqd, sA10d

i.e., Eq.(37). Equation(A10) is the central result obtained in
Ref. [51] [see Eq.(16) of Ref. [51]].
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